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A B S T R A C T
Complete traffic data collection is crucial for intelligent transportation system, but due to various
factors such as cost, it is not possible to deploy sensors at every location. Using spatial interpolation,
the traffic data for unobserved locations can be inferred from the data of observed locations, providing
fine-grained measurements for improved traffic monitoring and control. However, existing methods are
limited in modeling the dynamic spatio-temporal dependencies between traffic locations, resulting in
unsatisfactory performance of spatial interpolation for unobserved locations in traffic scene. To address
this issue, we propose a novel dual branch graph neural network (DBGNN) for spatial interpolation
by exploiting dynamic spatio-temporal correlation among traffic nodes. The proposed DBGNN is
composed of two branches: the main branch and the auxiliary branch. They are designed to capture
the wide-range dynamic spatial correlation and the local detailed spatial diffusion between nodes,
respectively. Finally, the two branches are fused via a self-attention mechanism. Extensive experiments
on six public datasets demonstrate the advantages of our DBGNN over the state-of-the-art baselines.
The codes will be available at https://github.com/SYLan2019/DBGNN.

1. Introduction
The development of Intelligent Transportation System

(ITS) requires high resolution spatio-temporal data to uncover
the essential patterns in traffic scenes. As a result, an
increasing number of sensors are being deployed to collect
traffic data such as traffic flow and speed, which facilitates
traffic monitoring and management [1]. However, in practice,
the distribution of sensors is often sparse and uneven in space,
due to practical challenges in sensor deployment, including
associated cost and geographical environment constraints.
To obtain fine-grained data with higher spatial resolution,
spatial interpolation based on spatio-temporal information
is commonly employed to estimate the traffic data for the
locations where no traffic sensors are deployed [2–6].

An illustration for spatial interpolation is given in Fig.
1(a), where the data from limited known nodes (with sensors)
are used to infer the state of unknown nodes (without sensors)
within a certain period of time. The key aspect of spatial
interpolation lies in modeling the complex spatio-temporal
relations among the nodes, which is also known as spatio-
temporal kriging [3, 6].

Many methods have been proposed for the spatial inter-
polation task. Early methods such as K-Nearest Neighbors
(KNN) [7] and Inverse Distance Weighting (IDW) [8] only
modeled linear spatial relationships. The traditional Kriging
method (OKriging) [9] assumes data follows Gaussian dis-
tribution, while real-world data may not follow a Gaussian
distribution [10]. Some works view spatial interpolation as
a tensor/matrix completion task [11, 12]. However, these
methods are transductive, which means they cannot handle
unknown locations that were not seen during training. Recent
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works on spatial interpolation have been conducted from
the perspective of spatio-temporal data mining [2–4, 6].
They model spatiotemporal correlations jointly by combining
Graph Neural Networks (GNNs) and sequence modeling
modules such as Recurrent Neural Networks (RNNs) and
Temporal Convolutional Networks (TCNs), as well as atten-
tion mechanisms. Although these methods have achieved
good performance, they still have two major limitations.

First, existing models lack sufficient attention to dynamic
spatial correlations. As shown in Fig. 1 (b), the sequence
patterns of A and B are highly similar within the red dashed
box, indicating a strong spatial correlation between sensor
A and B during this time period. However, their correlation
is weaker within the blue box. This indicates that the spatial
correlations between nodes may dynamically change over
time. Unfortunately, most existing works (e.g. KNN [7],
IDW [8], GLTL [11], OKriging [10], KCN [2], IGNNK [3],
INCREASE [6]) are based solely on static graphs, which
cannot accurately capture the dynamic spatial dependencies
between nodes. In recent baseline IAGCN, the dynamic graph
is created based on node embeddings and remains fixed
once trained. For this reason, it cannot truly adapt to the
dynamic characteristics of the graph structure during the
testing phase. Furthermore, in existing spatial interpolation
methods, the generation of dynamic graph edges does not
consider randomness [13], as a result, they are prone to the
potential risk of overfitting in model training. To address these
issues, we propose an attention-based dynamic graph learning
module which not only captures dynamic structural attributes
of the graph during the testing phase, but also introduces
randomness into graph edge generation, alleviating the
potential overfitting issue in model training the graph neural
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Figure 1: (a) In this example, the aim of spatial interpolation
is to estimate the data of an unobserved location X within
a certain time interval using the known data of locations A,
B, and C. (b) The spatial correlation between nodes exhibits
complex dynamic characteristics. Such correlation is sometimes
highly related to spatial adjacency. For example, within the red
dashed box, the traffic data collected at node A is more similar
to that of node B, rather than that of node C. At other times,
this correlation is almost unaffected by the spatial adjacency.
For example, within the green dashed box, the trend of node A
is more similar to that of node C, rather than that of node B.

networks and thus improving the robustness of the proposed
method.

Second, existing models overlook the importance of local
spatial correlations, although they contain useful information
about the road network structure. Tobler’s First Law [14]
points out that everything is interrelated, and the closer it
is, the more relevant it is. In traffic scenes, the real-time
changes of a node can affect its adjacent nodes instantly,
but they may have little impact on the distant nodes. For
example, as shown in Figure 1 (b), traffic congestion occurs
at node A on the road, but it is then quickly resolved.
The speed recorded by node A will first decrease and then
rebound, and this process is very rapid. The local adjacent
point B can perceive this change almost in real time, while
the distant node C is very likely unaffected. As mentioned
above, changes in details usually affect the local space, and
are originated from the transfer of traffic flow. Motivated
by this observation, we propose a dual-branch structure
for capturing both semantic and detailed information from
the spatiotemporal features. Inspired by BiSeNetV2 [15]
developed for visual segmentation, our proposed dual-branch
structure uses the main and auxiliary branch to capture the

wide-range dynamic spatial correlations and local spatial
correlations between sensor nodes, respectively.

In summary, to address the aforementioned issues, we pro-
pose a Novel Dual Branch Graph Neural Network (DBGNN)
for spatial interpolation tasks in transportation scenarios.
Our DBGNN network consists of a main branch and an
auxiliary branch. The main branch employs a deep network
structure with multi-level skip connections to capture the
wide-range spatiotemporal information, while the auxiliary
branch uses a shallow network to obtain low-level detailed
information. Finally, an attention mechanism is utilized to
fuse the outputs from these two branches and enhance the
interpolation performance. The main contributions of our
work are summarized as follows:

• We design a new Dynamic Graph Learning (DGL)
module that can capture dynamic spatial correlations
among nodes using attention mechanisms. When the
input changes, DGL can adaptively generate dynamic
graph (𝐴𝑑) during the training and testing stages.
Furthermore, we introduce randomness into graph
edge generation, alleviating the potential overfitting
and oversmothing issue in training the graph neural
networks and thereby improving the robustness of the
proposed method.

• We introduce a novel dual branch architecture from dif-
ferent perspectives to model the diffusion mechanism
between traffic nodes. The main branch stacks several
spatiotemporal layers to represent the global dynamic
spatiotemporal correlations among nodes at multiple
temporal levels. The auxiliary branch is designed as a
shallow network structure to focus on the local spatial
correlations between nodes.

• We validate our model on seven well-known real-world
datasets. The experimental results show that our model
has achieved state-of-the-art performance in all six
traffic datasets, and also performs well on another air
quality dataset.

2. Related Works
2.1. Spatio-Temporal Graph Neural Networks

As an effective method for spatio-temporal data mining,
Spatio-temporal Graph Neural Networks (STGNNs) have
gained significant attention. For example, it has been used
for traffic flow forecasting [16–19] or demand forecasting
[20]. Early works [21–23] mainly regarded spatiotemporal
sequences as time series with independent positions, and used
Recurrent Neural Networks (RNNs) such as Long Short-Term
Memory (LSTM) [24] and Gate Recurrent Unit (GRU) [25]
to model temporal relationships. However, they often ignored
the strong spatial correlations in spatiotemporal sequences.
Convolutional Neural Networks (CNNs) have also been used
to model spatial dependencies [26–31]. However, CNNs are
not suitable for directly modeling graph-structured data. Kipf
et al. [32] proposed a graph convolutional network (GCN),
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simpler and faster than Chebnet [33], to extract and fuse
spatial features in the spatial domain. In the field of time
series modeling, TCN [34] which is improved by CNN, can
avoid gradient vanishing or exploding problems, and can also
perform parallel computing. Thus, most STGNNs combine
GNNs with either RNNs or TCNs [17, 35–37]. Recently,
attention mechanisms have been shown to perform well in a
wide range of tasks, and numerous researchers have applied
the attention mechanism in their STGNNs [16, 38–40].

Modeling dynamic spatial correlations has become a
popular paradigm in various tasks (such as prediction) using
spatiotemporal data, which can be roughly divided into
two categories. In the first category, attention, instead of
graph convolution, is used to model long-term correlated
features in spatiotemporal data sequence, such as GMAN
[38], STAEformer [41], and PDFormer [18]. However, these
models ignore the graph structure prior information, which
play a crucial role in understanding traffic evolution due
to the well-known heterogeneity of the nodes and edges in
traffic scenarios. In the second category, dynamic graphs
are generated to represent dynamic associations, such as
GraphWavenet [35], AGCRN [42], AdaSTNet [43], MSGNet
[44], and DAGN [45]. These methods use trainable node
embedding to discover potential spatial correlations, but
the graphs generated in this way do not change during the
testing phase. As a result, they are limited in representing
dynamics in traffic data. Some methods are based on data-
driven approaches to generate dynamic graphs, such as
STFGNN [46] and STGODE [47], which use the DTW
algorithm to calculate the similarity between two sequences
to measure the spatial correlation of nodes. However, their
computational complexity is high. In [48], cosine similarity
is used to calculate dynamic graphs, but it is not sensitive
to data scale. ASTGNN [49] use attention mechanisms to
adjust static graph, but this approach can only adjust the
existing spatial correlation between known nodes and is
ineffective for unknown nodes. STP-TrellisNets+[50] relies
on the passenger transfer data between nodes to construct
dynamic graphs, however, most traffic datasets do not have
this type of data. In spatiotemporal prediction, research on
dynamic spatial correlations is abundant, while in spatial
interpolation tasks, there is less attention paid to dynamic
spatial correlations.
2.2. Spatial Interpolation

Spatial interpolation can be used to infer data at unob-
served locations using information from observed locations.
This technique can facilitate the observation of the state of
traffic scenes and management of the traffic flows. Early
methods primarily focus on modelling linear spatial depen-
dencies to estimate the unobserved nodes, such as KNN [7]
and IDW [8]. The KNN finds the nearest K neighbors of each
unknown location and averages them, while IDW uses the
inverse distance as the summation coefficient. In addition,
there are early geostatistical interpolation methods, such as
the classic Kriging method [9]. However, the original Kriging

method assumes that the data follows Gaussian distribution,
which may not necessarily match the actual data distribution.

Previously, treating the Kriging task as matrix/tensor
factorization completion is one of the classic approaches
[11, 12, 51, 52]. For example, GLTL [11] sets the entries
in the input tensor corresponding unobserved locations to
zero, and then uses tensor completion methods to recover the
values of these locations. GE-GAN [53] is another approach,
which matches the observed nodes that are most relevant to
each unobserved node in terms of their node embeddings, and
then uses generative model [54] to generate estimates for the
unobserved nodes. However, these models are transductive,
that is to say, they cannot handle unknown nodes that are not
seen during training. Recent studies have demonstrated the
inductive ability of GNNs [55–57], which can be generalized
to new graph structures. KCN [2] and IGNNK [3] using GCN
for inductive kriging, achieved promising results. Especially,
unlike traditional kriging that only considers spatial corre-
lations, IGNNK has introduced temporal dependencies to
improve spatial interpolation accuracy. However, these graph
structures are based on local fixed distance, and thus unable
to reflect the correlations between nodes that are distant from
each other and cannot capture dynamic correlations between
nodes over time.

Recently, DualSTN [4] uses both long-term and short-
term branches for spatial interpolation. However, it is a one-
step interpolation model. INCREASE [6] models and fuses
three types of heterogeneous spatial correlations including
spatial proximity, functional similarity, and transition prob-
ability. Whereas, using predefined spatial associations may
not efficiently reflect hidden spatial dependencies, and the
latter two spatial associations are only suitable for some
specific datasets. To solve the challenges in directly using
node embedding to construct dynamic graphs for spatial
interpolation, IAGCN [58] chooses to train and update the
embeddings of the known nodes, while the embeddings of
the unknown nodes in the testing phase are obtained by graph
convolution diffusion. However, its use of physical distance
based adjacency graphs may not accurately reflect the spatial
correlations between the embeddings, resulting in incorrect
embeddings of the unknown nodes.

Although these methods have considered modeling the
spatio-temporal dependencies for spatial interpolation, they
have not yet explored the modelling of dynamic spatial de-
pendencies and local spatial dependencies. In this article, we
propose a novel dual branch graph neural network (DBGNN),
in which the main branch stacked with deep spatiotemporal
layers is used to capture long-range dynamic spatio-temporal
dependencies, and the auxiliary branch containing shallow
graph convolution is used to model local spatial correlations.
By fusing the outputs of the two branches, more accurate
interpolation results are obtained.
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Figure 2: Framework of our DBGNN. The overall structure consists of two branches and a Fusion module. The main branch
consists of an Embedding layer, several spatio-temporal blocks, and an MLP layer. Each spatio-temporal block includes a Gated
Temporal Convolutional module (G-TCN), a Squeeze and Excitation (SE) module, a Dynamic Graph Learning (DGL) layer, and a
Diffusion Graph Convolution (DGCN) module. The auxiliary branch includes shallow layers of DGCN. In each spatio-temporal
block of the main branch, the predefined static graph 𝐀s and the dynamic graph 𝐀d learned via DGL are jointly used to represent
spatial correlations, while the predefined static graph 𝐀s is only used for each DGCN in the static graphs of the auxiliary branch.

3. Methodology
3.1. Preliminaries

Road network can be defined as a graph  = ( ,  ,𝐀),
where  is a set of 𝑁 nodes (equivalent to sensors and
their positions) within the road network, and  is a set
of edges which represent the connections between nodes.
𝐀 ∈ ℝ𝑁×𝑁 corresponds to the adjacency matrix of the
graph, where 𝐴𝑖𝑗 = 1 indicates that node 𝑣𝑖 and node 𝑣𝑗 are
connected. Assuming 𝐗𝑜

𝑇−𝑡∶𝑇 ∈ ℝ𝑁𝑜×𝑡 represents the data
of 𝑁𝑜 observed points at 𝑡 time slices, and 𝐗𝑢

𝑇−𝑡∶𝑇 ∈ ℝ𝑁𝑢×𝑡

represents the data of 𝑁𝑢 unobserved points at 𝑡 time slices,
given 𝐀 ∈ ℝ(𝑁0+𝑁𝑢)×(𝑁0+𝑁𝑢) representing the adjacency
relationships of all nodes (include observed and unobserved
nodes, i.e., 𝑁 = 𝑁𝑜 +𝑁𝑢), along with a trainable model  ,
the spatial interpolation task is to estimate 𝐗𝑢

𝑇−𝑡∶𝑇 as follows:

𝐗𝑢
𝑇−𝑡∶𝑇 =  [𝐗𝑜

𝑇−𝑡∶𝑇 ] (1)
3.2. Overview

The proposed model DBGNN is shown in Fig. 2, which
consists of a main branch, an auxiliary branch, and a fusion
module. The main branch is composed of multiple stacked
spatiotemporal blocks, which are used to capture dynamic
spatiotemporal correlations. The auxiliary branch employs
a few layers of graph convolution to capture local spatial
correlations, obtaining low-level detailed information. The
fusion module merges the interpolation results from these two
branches using self-attention. In our method, we use GCN to
achieve spatial interpolation, which aggregates information

0 0 1 0 0 0 0

time of day: 3/288
day of week: 5/7
value: 7

0 0 0 1 0 0

0 0 7 0 0 0 0 0 0 0 7 0 0

tod dow

one-hot codingone-hot coding

Figure 3: An example of time embedding.

from known nodes to infer values for unknown nodes. We
will detail these components next.
3.3. Main Branch
3.3.1. Embbeding

Traffic data, as a representative of spatiotemporal data,
exhibits strong periodicity and trends. Encoding time-of-day
and day-of-week information for each time step can help the
model learn these characteristics. Specifically, the time-of-
day and day-of-week information for each time slice can be
separately encoded as one-hot vectors Etod ∈ ℝ𝐹𝑡 and Edow ∈
ℝ𝐹𝑑 , where 𝐹𝑡 represents the number of time steps in a day
(e.g., if recorded every 5 minutes, then 𝐹𝑡 = 288), and 𝐹𝑑represents the number of days in a week, i.e., 𝐹𝑑 = 7. These
two vectors can be concatenated to obtain Etime ∈ ℝ(𝐹𝑡+𝐹𝑑 ).
The one-hot encoding vector 𝐸𝑡𝑖𝑚𝑒 consists of 0 and 1. The
values at positions 𝐿𝐹 𝑡 and 𝐿𝐹𝑑 in the vector 𝐸𝑡𝑖𝑚𝑒 are 1,
indicating that the time information of this traffic data is on
the 𝐿𝐹 𝑡-th time slice of one day and the 𝐿𝐹𝑑-th day of one
week. Here, 𝐿𝐹 𝑡 ∈ [1, 𝐹𝑡], 𝐿𝐹𝑑 ∈ [𝐹𝑡 + 1, 𝐹𝑡 + 𝐹𝑑]. To
further reflect the specific traffic data at this time, we replace
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the 1 at positions 𝐿𝐹 𝑡 and 𝐿𝐹𝑑 in the vector 𝐸𝑡𝑖𝑚𝑒 with the
actual traffic data value. Thus we obtain the embedded data
emb ∈ ℝ𝑁×𝑇×(𝐹𝑡+𝐹𝑑 ), where 𝑁 represents the number of
nodes, and 𝑇 represents the number of time steps in the input.
Finally, we use a 1 × 1 convolution to reduce its dimension
and obtain the hidden state input 0 ∈ ℝ𝑁×𝑇×𝐹 for the
subsequent spatiotemporal layers. An example of the time
embedding is shown in Fig. 3.
3.3.2. Gated-Temporal Convolutional Network

We use dilated causal convolution [59] as the TCN layer
to capture the temporal dependencies of a node. Previous
work often used RNN such as LSTM [24] and GRU [25] for
sequence modeling tasks. Compared to RNN-based models,
the training of TCN can be done in parallel, and it is not prone
to gradient vanishing and exploding issues. TCN is adept at
capturing local relationships due to its crucial convolutional
structure. By combining dilated convolution techniques [59],
it can improve its ability to capture long-range dependencies
to a certain extent. In addition, the causal convolution ensures
that the prediction at the current time step depends only
on past information, while dilated convolution allows the
receptive field to grow exponentially as the number of layers
increases. Given a one-dimensional sequence 𝐬 ∈ ℝ𝑇 and a
convolutional kernel 𝜽 ∈ ℝ𝐾𝑠 , the causal dilated temporal
convolution can be represented as follows:

𝐬 ⋆ 𝜽(𝑡) =
𝐾𝑠−1
∑

𝑖=0
𝜽(𝑖)𝐬(𝑡 − 𝑑 × 𝑖) (2)

where ⋆ represents the convolution operation, 𝑡 represents
the current time step, 𝑑 is the dilation factor, and 𝐾𝑠 is the
size of the convolutional kernel.

Furthermore, we adopt the gated TCN (G-TCN) proposed
in [35] to model complex temporal dependencies by lever-
aging the effectiveness of the gating mechanism. Given the
input  ∈ ℝ𝑁×𝐹×𝑇 , the mathematical formulation of the
gated TCN is written as follows:

𝐡 = tanh
(

𝜃1 ⋆  + 𝐛
)

⊙ si𝑔𝑚𝑜𝑖𝑑(𝜽2 ⋆  + 𝐜) (3)
where the 𝜃1, 𝜃2, 𝐛 and 𝐜 are model parameters, ⨀ represents
the Hadamard product, 𝑡𝑎𝑛ℎ (⋅) serves as the activation
function for the input, and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (⋅) determines the gating
ratio for filtering the latent representations.
3.3.3. Dynamic Graph Learning

The adjacency relationship between nodes is usually
represented by a static adjacency matrix 𝐀𝑠 ∈ ℝ𝑁×𝑁 ,
which is usually predefined based on the spatial Euclidean
distance between nodes. However, the predefined adjacency
matrix is static and cannot adapt to the dynamic changes of
the dependencies between nodes over time. Moreover, the
adjacency matrices based on prior knowledge, such as spatial
distance, fail to fully capture the hidden spatial relationships,
such as functional similarity. Recent works focus on learning
dynamic graph structures from data. For instance, in [35],
two self-learning node embeddings are used to guide the

spatiotemporal predictions. Although this approach can learn
spatial connections from training data, this method cannot
handle unseen nodes. In addition, the spatial correlations
between nodes in the training and testing sets may differ.

In contrast, we choose to directly learn the dynamic
adjacency matrix 𝐀𝑑 ∈ ℝ𝑁×𝑁 from the input data. Inspired
by the work in [60], we utilize self-attention mechanism
to capture the spatial relationships between traffic nodes
for node-specific data. Assuming the current input is 𝐗 ∈
ℝ𝐵×𝑁×𝑇 , we can obtain the embedding 𝐗 ∈ ℝ𝐵×𝑁×𝑇×𝐹 by
passing 𝐗 through an embedding layer, where 𝐵 represents
the batch size, 𝑁 is the number of nodes, 𝑇 is the number of
time slices in the input, and 𝐹 denotes the dimension of the
embedding layer. Then, for every sample 𝐗𝑏 ∈ ℝ𝑁×𝑇×𝐹 , we
reshape it into 𝐗′

𝑏 ∈ ℝ𝑁×𝐷, where 𝐷 = 𝑇 ×𝐹 . The dynamic
graph is computed as follows:
𝐐𝑏 = 𝐗′

𝑏𝐖𝑞 ,

𝐊𝑏 = 𝐗′
𝑏𝐖𝑘,

𝐀𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
( 𝐵
∑

𝑏=0

𝐐𝑏𝐊⊤
𝑏

√

𝑑𝑘

)

,

𝐴𝑖𝑗
𝑑 =

{

𝐴𝑖𝑗
𝑑 , with probability 1 − 𝑝

0, with probability 𝑝, and 𝐴𝑖𝑗
𝑑 ∉ top 𝐾(𝐀𝑑)

(4)
where 𝐖𝑞 ∈ ℝ𝐷×𝑑 and 𝐖𝑘 ∈ ℝ𝐷×𝑑 are the learned
parameters. The superscript ⊤ represents the transpose of
a matrix. Since 𝐀𝑑 is computed from data, during training
and testing phases, it changes with the input, reflecting the
dynamic changes in the spatial dependencies between the
nodes as their corresponding time series change. Furthermore,
to make the model more robust, we introduce randomness into
the generation of dynamic graph edges in the training stage.
Specifically, we retain the top 𝐾 edges with the strongest
correlation and randomly discard the remaining edges with a
probability 𝑝. This approach preserves the edges with strong
correlation and avoids the loss of important correlations,
while reducing the risk of overfitting and alleviating the prob-
lem of over smoothing caused by multiple graph convolutions
[13].
3.3.4. Diffusion Graph Convolution Network

Graph convolution serves as a pivotal operation for ex-
tracting node features in non-Euclidean space and integrating
them according to the graph structure. By simplifying the
Chebyshev spectral filter [33], a first-order approximate
spatial GCN is proposed in [32] to update the node states by
aggregating the information from the adjacent nodes. Given
the input 𝐗 ∈ ℝ𝑁×𝐹 and the normalized adjacency matrix
𝐀̃ ∈ ℝ𝑁×𝑁 , the GCN is defined as follows:

𝐇 = 𝐀̃𝐗𝐖 (5)
where 𝐇 ∈ ℝ𝑁×𝐷 represents the output and 𝐖 represents
the parameter matrix. In [37], Diffusion Graph Convolution
Network (DGCN) was proposed based on GCN, which views
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graph convolution as a K-step diffusion process, and this has
been proven to be effective. Therefore, we use DGCN [37]
as the fundamental module for extracting and aggregating
spatial information, as follows:

𝐙 =
𝐾𝑜
∑

𝑘=0

(

𝐀𝑘
f𝐗𝐖k1 + 𝐀𝑘

b𝐗𝐖k2

)

(6)

where the 𝑘-th order forward transition matrix 𝐀𝑘
f =

𝐀∕𝑟𝑜𝑤𝑠𝑢𝑚(𝐀), the backward transition matrix 𝐀𝑘
b =

𝐀∕𝑟𝑜𝑤𝑠𝑢𝑚(𝐀⊤), the 𝐀⊤ is the transpose of 𝐀, 𝐾𝑜 represents
the diffusion order, 𝐖k1 and 𝐖k2 represent the learnable
parameters for the 𝑘-th forward and backward diffusion order,
respectively.

However, using only a predefined static adjacency matrix
𝐀s, DGCN is unable to capture the dynamic spatial con-
nections among nodes. Motivated by [35], we incorporate
a dynamic adjacency matrix 𝐀d into the diffusion graph
convolution and propose the following graph convolutional
layer:

𝐙 =
𝐾𝑜
∑

𝑘=0

(

𝐀𝑘
s,f𝐗𝐖k1 + 𝐀𝑘

s,b𝐗𝐖k2 + 𝐀𝑘
d,f𝐗𝐖k3 + 𝐀𝑘

d,b𝐗𝐖k4

)

(7)
where 𝐀𝑘

s,f , 𝐀𝑘
s,b, 𝐀𝑘

d,f , and 𝐀𝑘
d,b correspond to the forward

and backward transition matrices of 𝐀s and 𝐀d, respectively,
while 𝐖k1, 𝐖k2, 𝐖k3, and 𝐖k4 represent the corresponding
learnable parameters.
3.3.5. Multi-level Feature Fusion

Multi-level feature extraction and fusion have been proven
effective in computer vision [61, 62]. By extracting features
at different receptive fields, both global and local information
can be captured. In the field of spatiotemporal exploration,
researchers have also recognized the multi-level nature of
time series [4, 35]. As the features are passed through
the stacked TCN modules, the receptive field is gradually
increased. This results in multi-level features similar to
those in GraphWavenet [35], where the shallow features
capture the local subtle changes, while the deep features
capture the global overall trends. Fusing features of different
time resolutions can improve the modeling of temporal
relationships within data.

In our work, the main branch consists of stacked spa-
tiotemporal layers, where the embedded data is fed into these
layers to extract features at different levels. Specifically, we
obtain the downsampled features 𝑙 ∈ ℝ𝑁×𝐹1×𝑇1 of the 𝑙-th
layer in the temporal dimension using GTCN, then we adjust
the weights of different channels to obtain ℎ𝑙 ∈ ℝ𝑁×𝐹1×𝑇1

using the classical Squeeze and Excitation (SE) block [63].
At this point, the DGL layer is applied to compute the
dynamic graph 𝐴𝑙

𝑑 corresponding to ℎ𝑙 ∈ ℝ𝑁×𝐹1×𝑇1 and
guide the subsequent diffusion graph convolutional layers.
The output of DGCN is sent to the next saptio-temporal layer.
It’s important to note that with different time resolutions,
the computed dynamic spatial correlations also vary. In
addition, following the approach of [35], we concatenate all

ℎ𝑙 ∈ ℝ𝑁×𝐹1×𝑇1 and the output 𝑧𝐿 ∈ ℝ𝑁×𝐹𝐿×𝑇𝐿 of the last
DGCN with skip connections to obtain multi-level features
and use an multi-linear perceptron (MLP) layer for fusion,
resulting in the main branch’s output 𝐘m ∈ ℝ𝑁×𝑇 , as follows:

𝐘m = 𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, ...ℎ𝐿, 𝑧𝐿)) (8)
3.4. Auxiliary Branch

In a spatial interpolation task, the unobserved points lack
historical data for reference. Therefore, it is necessary to
exploit information from other nodes to infer the missing data
at the unobserved nodes. This can be achieved by modelling
the spatial correlations of nodes, including both the local
spatial correlations that reflect physical topology and the
dynamic global spatial correlations that reflect semantic
similarity. To this end, the auxiliary branch is designed
to capture the local spatial associations between traffic
nodes, using a shallow network to avoid the over-smoothing
problem (i.e., the loss of details) caused by multiple graph
convolutional layers.

Given the original input 𝐗 ∈ ℝ𝑁×𝑇 and the static adja-
cent matrix 𝐀s ∈ ℝ𝑁×𝑁 , we have the following formulation:

𝐙 =
𝐾𝑜𝑎
∑

𝑘=0

(

𝐀𝑘
s,f𝐗𝐖ka1 + 𝐀𝑘

s,b𝐗𝐖ka2

)

(9)

where 𝐾𝑜𝑎 represents the diffusion order, 𝐖ka1 and 𝐖ka1denote the corresponding learnable parameters, respectively.
There are several key points worth mentioning here: (1) The
dual-branch structure can represent features from different
perspectives, as demonstrated in [4, 60, 64, 65]. We use it to
separately model the dynamic global spatial correlations and
the local spatial correlations. (2) We do not use downsampling
in the temporal convolution of the auxiliary branch to preserve
more detailed information from the input data. (3) The
dynamic graph module is not used for the auxiliary branch
as the dynamic correlations obtained can be prone to noise,
which potentially degrades the performance, as shown in the
experiment section. (4) The features obtained by the auxiliary
branches contain detailed information, which can alleviate
the problem of over smoothing using deep GCNs [66].
3.5. Fusion Module

To integrate the information from the aforementioned two
branches, we concatenate the outputs of these two branches
and then apply the self-attention mechanism, as follows:

𝐐 = 𝐖q(𝐘m||𝐘a),

𝐊 = 𝐖k(𝐘m||𝐘a),
𝐕 = 𝐖v(𝐘m||𝐘a),

𝐘̂ = Sof tmax(𝐐𝐊⊤
√

𝑑
)𝐕

(10)

where 𝐘m ∈ ℝ𝑁×𝑇 is the output of the main branch, and
𝐘a ∈ ℝ𝑁×𝑇 is the output of the auxiliary branch. This fusion
method captures the dynamic features of the traffic data by
leveraging the weights obtained from the two branches.
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Algorithm 1 Training procedure
Input: training graph = (, ), training set𝑋; initialized
model DBGNN().
Output: optimized model parameters
for 𝑖 = 1 to 𝑁𝑢𝑚_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do

Initialize batch list 𝐗b = [], 𝐘b = [].
for 𝑗 = 1 to 𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒 do

randomly choose a start time 𝑡.
Append 𝑋𝑡∶𝑡+𝑇 to 𝐗b.
Append 𝑌𝑡∶𝑡+𝑇 to 𝐘b.

end for
𝑠 = Graph_Sampling().
𝐗𝑚
𝑏 = 𝑚𝑎𝑠𝑘(𝑋𝑏,𝑠)

end for
𝐘̂𝐛 = model(,𝐗𝐦

b )
Compute 𝐿𝑜𝑠𝑠(𝑌𝑏, 𝑌𝑏) and the gradients
Updata learnable parameters

3.6. Training Procedure and Loss Fuction
The data is divided into a training set and a test set,

where the unobserved points in the test set do not appear
in the training set. In order to achieve better generalization,
we follow the training strategy of [3]. In each iteration, we
randomly mask some nodes and their corresponding data in
the training set, and then use the data from the remaining
unmasked nodes to recover the data for the masked nodes.
The training procedure is shown in Algorithm 1. We optimize
the model by minizing the mean squared error (MSE) loss
between the ground truth and the estimated values, as follows:

 = 1
𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
|Ŷ𝑖,𝑡 − Y𝑖,𝑡|

+ 1
2𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
||Ŷm,𝑖,𝑡 − Y𝑖,𝑡||

2
2

+ 1
2𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
||Ŷa,𝑖,𝑡 − Y𝑖,𝑡||

2
2

(11)

where 𝑁 denotes the number of nodes in the training set, 𝑇
represents the number of time steps, Y denotes the ground
truth, Ŷ is the final interpolated result, and Ŷm and Ŷadenote the outputs of the main branch and auxiliary branch,
respectively.

4. Experiments
4.1. Datasets

To evaluate the performance of DBGNN, we conducted
experiments on six real traffic datasets, i.e., METR-LA [37],
PEMSBAY [37], PEMS04 [17], PEMS08 [17], Chengdu [67],
and Sedata [3], and one non traffic dataset, i.e., BJAir
[4], which is an air pollution dataset. (1) METR-LA [37]
contains traffic speed data recorded by 207 sensors on the
highways in Los Angeles from 01/03/2012 to 30/06/2012.
(2) PEMSBAY [37] contains traffic speed data recorded by

325 sensors in the Bay Area of California from 01/01/2017
to 13/05/2017. (3) PEMS04 [17] contains traffic data (flow,
speed, occupancy) collected by 307 sensors in San Francisco
from 01/01/2018 to 28/02/2018. (4) PEMS08 [17] contains
traffic data (speed, flow, occupancy) recorded by 170 sensors
in the San Bernardino from 01/07/2016 to 31/08/2016. (5)
Chengdu [67] is a collection of traffic speeds recorded in
Chengdu, consisting of 524 sensors from January 1, 2018
to April 30, 2018, with a recording interval of 10 minutes.
(6) Sedata [3] contains traffic speed data from 323 sensors in
Seattle. (7) BJAir [4] contains air quality index data from 35
sensors in Beijing, with a recording interval of 1 hour.
4.2. Baseline Methods

We compare our method with the following baselines:
(1) KNN [7]: The record of the unknown nodes is

estimated by averaging the data from the K-nearest known
nodes.

(2) IDW [8]: The distance from an unknown point to a
known point is used as a coefficient to weight the sum over
the data of the known points.

(3) OKriging [10]: OKriging is a well-known statistical
interpolation algorithm based on geographical coordinates.
Since the PEMS04 and PEMS08 datasets do not have sensor
coordinate information, we only tested the performance on
METR-LA and PEMSBAY.

(4) GLTL [11]: Greedy Low-rank Tensor Learning is a
transductive model based on matrix factorization.

(5) KCN [2]: It uses KNN to find reference nodes for
unknown points and then combines GNN for interpolation.

(6) IGNNK [3]: This is an inductive spatio-temporal
Kriging model that learns the spatio-temporal correlations
using the time series of nodes as features.

(7) DualSTN [4]: It uses two branches to model long-term
and short-term connections in temporal dimension.

(8) INCREASE [6]: This is an inductive model by
fusing three different spatial correlations with an attention
mechanism.

(9) IAGCN [58]: It combines graph convolution and
temporal convolution to model spatiotemporal dependencies,
and uses auxiliary tasks to help the model learn better.
4.3. Experiment Settings

For fair comparison, we use the same data partitioning
for all baselines. Following DualSTN, in all datasets, we use
the first 70% of the time slices as the training set, the next
20% as the validation set, and the final 10% as the test set.
We reserve 50% of the nodes for testing, and the remaining
nodes for training. In each iteration, we randomly mask 50%
of the training nodes as the unknown nodes. Note that test
nodes will not appear during the training phase. All methods
are implemented in PyTorch 1.10 and trained on an NVIDIA
GeForce RTX 3090 GPU. We set the time window 𝑇 = 25
for all the models. We set the number of training points for
the METR-LA, PEMSBAY, PEMS04, and PEMS08 datasets
to be 𝑁𝑜 = 104, 𝑁𝑜 = 165, 𝑁𝑜 = 157, and 𝑁𝑜 = 90,
respectively. The number of test points on these four datasets
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Table 1
Performance comparison our DBGNN and baselines on four real-world traffic datasets.

DATASET METRIC KNN IDW OK GLTL KCN IGNNK DUALSTN INCREASE IAGCN OURS Δ

METR-LA
MAE 8.43 8.16 8.35 8.09 7.57 6.78 7.11 6.26 6.69 6.09 +2.71%

RMSE 11.90 11.53 12.34 11.71 11.25 10.12 10.63 9.73 10.94 9.49 +2.46%
MAPE 0.223 0.208 0.256 0.206 0.203 0.196 0.188 0.169 0.195 0.168 +0.59%

PEMSBAY
MAE 5.45 5.57 5.53 5.20 4.70 4.04 3.95 3.88 4.14 3.68 +5.15%

RMSE 10.06 9.81 9.05 8.90 8.12 6.96 6.68 6.65 7.29 6.62 +0.45%
MAPE 0.109 0.113 0.105 0.098 0.095 0.092 0.088 0.090 0.095 0.087 +1.13%

*PEMS04
MAE 5.67 5.43 - 5.57 5.31 4.76 4.72 4.34 4.70 4.18 +11.06%

RMSE 9.79 9.44 - 9.46 9.13 8.49 8.30 8.06 8.25 8.02 +0.49%
MAPE 0.131 0.129 - 0.126 0.125 0.114 0.107 0.112 0.110 0.107 +0%

*PEMS08
MAE 5.32 5.22 - 4.80 4.55 4.27 3.88 4.14 3.79 3.59 +5.27%

RMSE 9.02 8.76 - 8.06 7.84 7.12 6.97 7.28 6.98 6.75 +3.15%
MAPE 0.119 0.104 - 0.096 0.095 0.092 0.084 0.092 0.085 0.082 +2.38%

*CHENGDU
MAE - - - 8.10 7.91 7.32 6.89 7.24 7.16 6.32 +8.27%

RMSE - - - 10.57 10.01 9.70 9.28 9.45 9.34 8.61 +7.21%
MAPE - - - 0.388 0.375 0.311 0.289 0.322 0.316 0.263 +8.99%

*SEDATA
MAE - - - 5.18 5.23 4.94 4.78 6.19 5.12 4.54 +5.02%

RMSE - - - 8.43 8.66 7.92 7.42 9.38 8.07 7.39 +0.40%
MAPE - - - 0.182 0.189 0.171 0.146 0.193 0.167 0.142 +2.73%

*BJAIR
MAE 18.45 17.98 18.03 16.52 16.33 15.42 13.58 14.15 14.45 13.66 -0.58%

RMSE 29.32 28.25 28.57 26.83 28.41 27.93 25.64 28.71 27.64 25.34 +1.17%
MAPE 1.042 0.947 0.951 0.938 0.767 0.607 0.487 0.564 0.521 0.509 -4.51%

∗ denotes re-implementation on this dataset. denotes the best baseline. - denotes that no result has been reported for the baseline on this dataset.

are 𝑁𝑢 = 103, 𝑁𝑢 = 160, 𝑁𝑢 = 150, and 𝑁𝑢 = 80,
respectively. For our DBGNN, through experiments, we
set the following hyperparameters. The main branch stacks
6 layers of STblock, while the auxiliary branch uses two
layers of DGCN. All GTCNs use 32 convolutional kernels
with a size of 2 and a dilation factor of 2. In the dynamic
graph module, the number of attention heads is 1, and the
embedding dimension 𝑑 = 32, the probability 𝑝 = 0.1, the
𝐾 = 0.1 ∗ 𝑁 , where 𝑁 is the number of nodes in the
current dynamic graph. In the fusion module, the embedding
dimension of attention is 𝑑 = 64. The optimizer is Adam with
a maximum of 500 epochs, and the learning rate is 0.0005.
The batch size is 4. We use the mean absolute error (MAE),
the mean absolute percentage error (MAPE), and the root
mean squared error (RMSE) as the performance metrics.
4.4. Experiment Results and Analysis

Table 1 shows the performance of DBGNN and eight
baselines. DBGNN has achieved the best results on four
real traffic datasets. Because we used the same setting as
DualSTN, we referenced its experimental data on METR-LA
and PEMSBAY, and retrained the baseline on PEMS04 and
PEMS08. From the table 1, it can be seen that the performance
of traditional statistical models is not as good as that of deep
learning methods. This is mainly because they are unable to
capture complex spatio-temporal correlations. Both KCN and
IGNNK use GNNs to capture spatial correlations, but IGNNK
also exploits the temporal dimension, which helps correct
the interpolation results. Meanwhile, due to the independent
modeling of time dependencies, DualSTN and INCREASE
generally perform better than IGNNK. The performance of
IAGCN is not very stable, which may be due to the impact
of the inaccurate embeddings of the unknown nodes. Our

model achieves state-of-the-art performance on the six traffic
datasets. On the BJAir dataset, our model is only slightly
inferior to DualSTN. This may be due to differences in
dataset characteristics. In traffic scenarios, the traffic flow
of any node in the road network usually flows directly to
its downstream nodes, resulting in strong spatial correlation
between locally adjacent nodes. At the same time, due to the
diffusion effect of traffic, long-distance nodes may also have
potential associations. Our model effectively captures the
local and global features from the nodes that are crucial for
spatial interpolation. In air scenarios, air quality often exhibits
local spatial smoothing characteristics. In such scenarios,
the introduction of global information can lead to redundant
information that may corrupt extracted features.
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Figure 4: Ablation experiment of module effectiveness.
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Figure 5: Performance at different missing ratio on the METR-
LA dataset. This result shows that our DBGNN has achieved
better performance under various missing rates.

Table 2
Performance Comparison of Different Main Branch Layers
(𝐿𝑚𝑎𝑖𝑛) with/without auxiliary Branch.

DATASET 𝐿𝑚𝑎𝑖𝑛 MODEL MAE RMSE MAPE

METR-LA
2 W/O AUX 6.50 9.98 0.190

W AUX 6.28 9.91 0.183
4 W/O AUX 6.20 9.76 0.179

W AUX 6.13 9.63 0.175
6 W/O AUX 6.12 9.56 0.176

W AUX 6.09 9.49 0.168

PEMSBAY
2 W/O AUX 3.88 6.83 0.093

W AUX 3.82 6.73 0.092
4 W/O AUX 3.84 6.77 0.092

W AUX 3.76 6.72 0.091
6 W/O AUX 3.80 6.73 0.091

W AUX 3.68 6.62 0.089

PEMS04
2 W/O AUX 4.31 8.17 0.110

W AUX 4.17 7.96 0.106
4 W/O AUX 4.28 8.27 0.110

W AUX 4.14 8.05 0.106

6 W/O AUX 4.31 8.25 0.110
W AUX 4.18 8.02 0.107

PEMS08
2 W/O AUX 3.78 6.90 0.084

W AUX 3.55 6.71 0.080

4 W/O AUX 3.85 6.99 0.085
W AUX 3.58 6.74 0.081

6 W/O AUX 3.84 6.99 0.086
W/O AUX 3.60 6.76 0.082

4.5. Ablation Study
To verify the effectiveness of each module in our model,

we made the following variants of DBGNN: (1) w/o Mul: This
variant removes the multi-level feature integration module
and only utilizes the output of the last ST block. (2) w/o De:
This variant removes the auxiliary branch. (3) w/o Main: This
variant removes the main branch. (4) w/o DGL: This variant
removes the dynamic graph learning module. We performed
ablation experiments on the above variants on four datasets.
Fig. 4 show the evaluation metrics of MAE and RMSE, where
lower values indicate better performance. It can be observed
that DBGNN outperforms all the variants, providing evidence
for the effectiveness of the proposed modules in our model.

In addition, to investigate the performance of the models
under different missing ratios, we conducted experiments on
the METR-LA dataset for INCREASE, DBGNN, the main
branch, and the auxiliary branch. The results are shown in Fig.
5, where the x-axis represents the ratio of unknown points to
the total number of nodes, and the y-axis represents the RMSE
metric. It can be observed that the main branch performs
better than INCREASE, demonstrating the robustness of our
proposed model. Additionally, the auxiliary branch has the
poorest performance due to its simple structure. However,
when combining the main and auxiliary branches in the
DBGNN model, the best performance is achieved, indicating
the improvement in interpolation accuracy by the auxiliary
branch. We attribute the relatively small improvement to
the presence of noise in the detailed information, which can
degrade the final results. We plan to further improve this
aspect in future work.

We further explored the differences between dynamic
graph learning and GAT. We replaced the attention score
calculation method in our dynamic graph learning (DGL)
module with GAT to obtain a variant of the proposed method,
DBGNN-GAT. The results are shown in Table 3. It can
be seen that the DGL module performs better than the
GAT module in the proposed DBGNN method. This may
be caused by the following reasons. (1) We use vector
scaling dot products, while GAT uses a process involving
vector concatenation followed by linear transformation. (2)
GAT only calculates attention scores for the adjacent nodes.
However, in our dynamic graph, the attention is calculated
for all the node pairs, including those without physical
connections. As a result, we can explore potential spatial
associations and provide more reference information for
unknown points to help improve the interpolation accuracy.

In addition, we investigate whether using DGL modules
in the auxiliary branch provides any benefits. To this end,
we performed additional experiments to evaluate a variant
DBGNN-AUXDGL, where we added the DGL module to the
auxiliary branch. The results are shown in Table 4. It can be
seen that after adding the DGL module, the performance of
the proposed method is actually degraded on the METR-LA
and PEMSBAY datasets, while the performance deteriorated
slightly or remained almost the same on PEMS04 and
PEMS08 datasets. This may be because the auxiliary branch
focuses more on the details and changes in the local receptive
field. The DGL is somewhat prone to the impact of noise, thus
resulting in degradation in the local information captured by
the auxiliary branch. In contrast, static adjacency graphs offer
advantages in capturing the structural properties between
nodes within a local region.

Finally, to further investigate the effectiveness of the
auxiliary branch, we conducted ablation experiments at
different number of main branch layers: without auxiliary
branch (W/O AUX), and with auxiliary branch (W AUX).
As shown in Table 2, without auxiliary branches, the system
performs the best on the METR-LA and PEMSBAY datasets
with 6 layers in the main branch, while performing the worst
with 2 layers. For the PEMS04 and PEMS08 datasets, the
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Figure 6: Parameters study on PEMSBAY, PEMS04, PEMS08. (a) Layers for ST blocks in main branch. (b) Layers for DGCNs in
auxiliary branch. (c) Dimensions of hidden representation in auxiliary branch
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0 5 10 15 20 25

Timesteps

0

10

20

30

40

50

60

70

Sp
ee

d

Traffic Speed

node 12
node 5
node 7
node 1

(c) The traffic speed data from 15:30, 22/05/2012.
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Figure 7: Visualization of dynamic graph

performance is relatively good when the number of layers was
2 or 4. When adding the auxiliary branch, the performance on
all the datasets has been steadily improved. When the number
of layers in the main branch is 2, it is unlikely to be over
smoothing and can still improve performance. This indicates
that when the number of layers is small, the auxiliary branch
can extract features from another perspective, increasing the
expressive power of the model. When the number of layers
used in the main branch is 6, over smoothing may occur. The
auxiliary branch can help increase node discrimination, and
alleviate the problem of over smoothing.
4.6. Parameter Study

We investigate the impact of three parameters: the number
of spatiotemporal (ST) layers in the main branch (𝐿m), the
number of DGCN layers in the auxiliary branch (𝐿a), and the
dimension of the hidden representation in the auxiliary branch
(𝐷a). We have conducted experiments on the PEMSBAY,
PEMS04, and PEMS08 datasets, and the results are presented
in Fig. 6. From Fig. 6 (a), it can be observed that the

Table 3
Comparison of performance between original DBGNN and
DBGNN-GAT.

DATASET MODEL MAE RMSE MAPE
METR-LA DBGNN 6.09 9.49 0.168

DBGNN-GAT 6.20 9.71 0.174
PEMSBAY DBGNN 3.68 6.62 0.092

DBGNN-GAT 3.88 6.90 0.095
PEMS04 DBGNN 4.18 8.02 0.107

DBGNN-GAT 4.30 8.07 0.109
PEMS08 DBGNN 3.59 6.75 0.082

DBGNN-GAT 3.66 6.81 0.085

performance is relatively low for a small number of ST-
block layers in the main branch, due to its limitation in fitting
with the data. Increasing the number of layers helps improve
the performance. However, further increasing the number
of layers may lead to overfitting and thus degradation in
performance. In Fig. 6 (b), as the number of DGCN layers
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Table 4
Comparison of performance between original DBGNN and
DBGNN-AUXDGL.

DATASET MODEL MAE RMSE MAPE
METR-LA DBGNN 6.09 9.49 0.168

DBGNN-AUXDGL 6.15 9.68 0.175
PEMSBAY DBGNN 3.68 6.62 0.092

DBGNN-AUXDGL 3.82 6.85 0.091
PEMS04 DBGNN 4.18 8.02 0.107

DBGNN-AUXDGL 4.20 8.09 0.107
PEMS08 DBGNN 3.59 6.75 0.082

DBGNN-AUXDGL 3.58 6.77 0.083

increases in the auxiliary branch, the model’s performance
deteriorates. This could be due to the loss of detailed
information as the number of layers increases. Fig. 6 (c)
demonstrates that a relatively low hidden dimension 𝐷a can
limit the model from accommodating information, while a
relatively high dimension may lead to overfitting.
4.7. Visualization of Dynamic Graph

To validate the effectiveness of the dynamic graph (i.e.,
dynamic adjacency matrix) and also show more details,
we performed visualizations on the dynamic graph and its
corresponding data sequences. Specifically, we selected a
subset of real sensors from the METR-LA dataset, numbered
from 0 to 12. Fig. 7 (a) and Fig. 7 (d) respectively depict the
distribution of these 13 sensors and the corresponding static
adjacency matrix. Fig. 7 (b) and Fig. 7 (c) depict the recorded
traffic speed data of node 1, 5, 7, and 12 in two different
time periods, while Fig. 7 (e) and Fig. 7 (f) depict their
respective adjacency matrices. We can observe the following.
(1) The adjacency matrix varies across different time periods,
which can be observed from the comparison of Fig. 7 (e)
and Fig. 7 (f). (2) The hidden spatial correlations are shown
to some extent. In Fig. 7 (b), the similarity between node
12’s sequence and the sequences of the other three nodes is
noticeably greater than that shown in Fig. 7 (c). Meanwhile,
the brightness of coordinates (12, 1), (12, 5), and (12, 7) in
Fig. 7 (d) is higher than the corresponding positions in Fig. 7
(e). This indicates that our dynamic graph learning module
is capable of generating different graph structures based on
different data and can uncover hidden spatial correlations
between nodes, even when they are far apart.
4.8. Visualization of Interpolation Result

To enhance the interpretability of the model, we visualize
the results of spatial interpolation, including the interpolation
results of INCREASE, our model and the two branches in
Fig. 8. From the figure, it can be observed that our model
is closer to the ground truth compared to INCREASE, and
the main branch is smoother than the auxiliary branch, while
the auxiliary branch exhibits volatility, indicating that the
auxiliary branch pays more attention to detailed information.
However, because it only relies on the static adjacency matrix,

its attention to overall changes is not as good as the main
branch.
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Figure 8: Comparision of interpolation result of INCREASE,
DBGNN, Main branch, and Auxiliary branch on a snap of the
test data of PEMSBAY. From the results of the auxiliary branch,
it can be seen that our designed auxiliary branch can better
capture fluctuations in detailed information. Please zoom in
the plots for a better view.

5. Conclusion
We have presented a novel dual branch graph neural net-

work (DBGNN) for spatial interpolation in traffic scene. Our
DBGNN has utilized a novel dynamic graph learning module
and stacked spatio-temporal blocks in the main branch to
capture global dynamic spatial dependencies at multiple
temporal levels. The auxiliary branch uses a shallow network
to represent local spatial correlation between traffic nodes,
thereby capturing detailed information in traffic data. The
proposed DBGNN achieves new state-of-the-art performance
on the six well-known traffic datasets for spatial interpolation,
compared to recent baselines. In the future, we will further
study multi-subspace representation learning to improve the
performance of spatial interpolation for blind zone in traffic
scene.
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